Skip to content

License

This software is provided under the MIT License


Copyright © 2013-2024 Takuto Maeda

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.


The author requests that the user cite (at least one of) the following papers in any publications that result from the use of this software, although this is not an obligation.

Accompanying Paper

  • Maeda, T., S. Takemura, and T. Furumura (2017), OpenSWPC: An open-source integrated parallel simulation code for modeling seismic wave propagation in 3D heterogeneous viscoelastic media, Earth Planets Space, 69, 102, doi:10.1186/s40623-017-0687-2.
  • Furumura, T. and L. Chen (2004), Large scale parallel simulation and visualization of 3D seismic wavefield using the Earth Simulator, Comp. Model. Eng. Sci., 6, 153-168. doi:10.3970/cmes.2004.006.153

  • Furumura, T. and L. Chen (2005), Parallel simulation of strong ground motions during recent and historical damaging earthquakes in Tokyo, Japan, Parallel Computing, 31, 149-165. doi:10.1016/j.parco.2005.02.003

  • Furumura, T. Hayakawa, M. Nakamura, K. Koketsu, and T. Baba (2008), Development of long-period ground motions from the Nankai Trough, Japan, earthquakes: Observations and computer simulation of the 1944 Tonankai (Mw 8.1) and the 2004 SE Off-Kii Peninsula (Mw 7.4) earthquakes, Pure Appl. Geophys., 165, 585-607. doi:10.1007/s00024-008-0318-8

  • Furumura, T. and T. Saito (2009), An integrated simulation of ground motion and tsunami for the 1944 Tonankai earthquake using high-performance super computers, J. Disast. Res., 4, 118-126. https://www.fujipress.jp/jdr/dr/dsstr000400020118/

  • Noguchi, S., T. Maeda, and T. Furumura (2013), FDM simulation of an anomalous later phase from the Japan Trench subduction zone earthquakes, Pure Appl. Geophys., 170, 95-108. doi:10.1007/s00024-011-0412-1

  • Maeda, T., and T. Furumura (2013), FDM simulation of seismic waves, ocean acoustic waves, and tsunamis based on tsunami-coupled equations of motion, Pure Appl. Geophys., 170, 109-127. doi:10.1007/s00024-011-0430-z

  • Maeda, T., T. Furumura, S. Noguchi, S. Takemura, S. Sakai, M. Shinohara, K. Iwai, S. J. Lee (2013), Seismic and tsunami wave propagation of the 2011 Off the Pacific Coast of Tohoku Earthquake as inferred from the tsunami-coupled finite difference simulation, Bull. Seism. Soc. Am., 103, 1456-1472. doi:10.1785/0120120118

  • Maeda, T., T. Furumura, and K. Obara (2014), Scattering of teleseismic P-waves by the Japan Trench: A significant effect of reverberation in the seawater column, Earth Planet. Sci. Lett., 397, 101-110. doi:10.1016/j.epsl.2014.04.037

  • Noguchi, S., T. Maeda, and T. Furumura (2016), Ocean-influenced Rayleigh waves from outer-rise earthquakes and their effects on durations of long-period ground motion, Geophys. J. Int., 205, 1099-1107. doi:10.1093/gji/ggw074

  • Takemura, S., T. Maeda, T. Furumura, and K. Obara (2016), Constraining the source location of the 30 May 2015 (Mw 7.9) Bonin deep-focus earthquake using seismogram envelopes of high-frequency P waveforms: occurrence of deep-focus earthquake at the bottom of a subducting slab, Geophys. Res. Lett., 43, 4297-4302. doi:10.1002/2016GL068437

  • Yoshimitsu, N., T. Furumura, and T. Maeda (2016), Geometric effect on a laboratory-scale wavefield inferred from a three-dimensional numerical simulation, J. Appl. Geophys., 132, 184-192. doi:10.1016/j.jappgeo.2016.07.002

  • Maeda, T., K. Nishida, R. Takagi, and K. Obara (2016), Reconstruction of a 2D seismic wavefield by seismic gradiometry, Prog. Earth Planet. Sci., 3, 31. doi:10.1186/s40645-016-0107-4

  • Todoriki, M., T. Furumura, and T. Maeda (2017), Effects of seawater on elongated duration of ground motion as well as variation in its amplitude for offshore earthquakes, Geophys. J. Int., 208, 226-233. doi:10.1093/gji/ggw388

  • Toya, M., A. Kato, T. Maeda, K. Obara, T. Takeda, and K. Yamaoka (2017), Down-dip variations in a subducting low-velocity zone linked to episodic tremor and slip: a new constraint from ScSp waves, Scientific Reports, 7, 2868. doi:10.1038/s41598-017-03048-6

  • Morioka, H., H. Kumagai, and T. Maeda (2017), Theoretical basis of the amplitude source location method for volcano-seismic signals, J. Geophys. Res., 122, 6538-6551. doi:10.1002/2017JB013997

  • Furumura, T., & Kennett, B. L. N. (2018). Regional distance PL phase in the crustal waveguide—An analog to the teleseismic W phase in the upper‐mantle waveguide. J. Geophys. Res., 123, 4007– 4024. doi:10.1029/2018JB015717

  • Furumura, T., & Kennett, B. L. N. (2019). The significance of long‐period ground motion at regional to teleseismic distances from the 610 km deep Mw8.3 Sea of Okhotsk earthquake of 24 May 2013. J. Geophys. Res., 124. doi:10.1029/2019JB018147